ADVANCES & CONSIDERATIONS IN THE USE OF INTRATHECAL TREATMENTS FOR MANAGING SPASTICITY

SPASTICITY INTERVENTIONS

Particularly challenging in prolonged disorders of consciousness

+ psychology, psychiatry, pain management or nothing

• Thibaut et al., Spasticity in disorders of consciousness: A behavioral study Europ Jnl of Phys & Rehab Med. Volume 51, Issue 4, 1 August 2015, Pages 389-397

Spasticity in adults: management using botulinum toxin RCP 2009

INTRATHECAL PHENOL

- First used in 1950's
- Neurolytic chemical protein coagulation causes nonselective tissue destruction and initiates Wallerian degeneration in motor and sensory nerves
- Aim: Reduce hip flexor, extensor and adductor spasms
- Treatment surpassed by new oral antispasmodics, ITB and botulinum toxins.

[•] Jarrett, L; Nandi, P; Thompson, AJ. Managing severe lower limb spasticity in multiple sclerosis: does intrathecal phenol have a role? Journal of neurology neurosurgery and psychiatry; DEC, 2002; 73; 6; p705-p709

Pinder, Colin; Bhakta, Bipin; Kodavali, Krishna, Intrathecal phenol: an old treatment revisited Disability & Rehabilitation 2008, Vol. 30 Issue 5, p381

PATIENT SELECTION

- Indications
 - Intractable lower limb spasticity unresponsive or unsuitable to other management options and causing pain, or day to day care problems (e.g. difficulties with seating, perineal hygiene, dressing, hoisted transfers)
- Relative contraindications
 - Being sexually active. Patient able to pass urine but incontinent, bladder managed with convene/pads.
 - Patient incontinent of faeces but some sensation of need to pass faeces still present
- Absolute contraindications
 - Intact bowel and bladder function, intact sensation, functionally useful lower limb movement, potential for spontaneous recovery of underlying neurological condition

[•] Pinder, Colin; Bhakta, Bipin; Kodavali, Krishna, Intrathecal phenol: an old treatment revisited Disability & Rehabilitation 2008, Vol. 30 Issue 5, p381

IP PROCEDURE

- Patient position with lumbar spine horizontal and 30° anterior rotation
- Trial of local anaesthetic (bupivacaine) injected L2/3 or L3/4
- If successful proceed to IP injection
- 5% Phenol in glycerol injected and position maintained for 20mins – 6 hours
- Repeat on alternate side if required >24hrs
- Monitor BP for at least 1 hour

IP OUTCOMES – Jarrett 2002

- 25 patients with MS with EDSS \geq 8 (non-ambulatory)
- Mean 3.2 injections (11 repeat)
- 16 improved ease with PADL
- Pain reduced from 11 with pre-existing pain to 4 no pain, 7 reduced pain
- Ashworth Scores reduced by median1.5 2
- All experienced a reduction in spasms (10 complete)

ADVERSE EFFECTS

- No AE's with bladder or sexual function
- Five reported changes in bowel function
- Short term moderate drop in BP

Jarrett, L; Nandi, P; Thompson, AJ. Managing severe lower limb spasticity in multiple sclerosis: does intrathecal phenol have a role? Journal of neurology neurosurgery and psychiatry; DEC, 2002; 73; 6; p705-p709

IP OUTCOMES - Pinder 2008

- Forty patients: 34 with MS, 3 had multiple strokes affecting both legs,1 had traumatic brain injury, 1 had hypoxic brain injury and 1 CP
- Spasticity: 6 slight improvement, 28 substantial improvement, 6 excellent improvement
- Goals: 56% substantial improvement or excellent improvement
- ROM: 38 had increased passive ROM
- No change in upper limb function
- Duration of action 2 -23months (mean 8.3)

ADVERSE EFFECTS

- 3 patients acute urinary retention requiring temporary catheterisation
- 1 mild chemical meningitis

[•] Pinder, Colin; Bhakta, Bipin; Kodavali, Krishna, Intrathecal phenol: an old treatment revisited Disability & Rehabilitation 2008, Vol. 30 Issue 5, p381

INTRATHECAL BACLOFEN

PHARMACODYNAMICS

- BACLOFEN:
 - β-(4-chlorophenyl)-γ-aminobutyric acid (β-(4-chlorophenyl): a chemical analogue of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA).
 - is a selective GABA_B agonist and lipophilic so crosses the blood brain barrier whereas GABA cannot cross.
 - binds to GABA_B receptors, which are found predominantly pre-synaptically in the 1a sensory afferent neurones, the interneurones and also post-synaptically in the dorsal horn motor neurones. The pre-synaptic agonistic action on GABA_B receptors reduces calcium influx and suppresses the release of excitatory neurotransmitters, including glutamate – PRESYNAPTIC INHIBITION. In addition, there is a postsynaptic increase in potassium conductance - POSTSYNAPTIC HYPERPOLERAISATION, the net result being *inhibition of both monosynaptic and polysynaptic reflexes*

DOSAGE: ITB VS. ORAL BACLOFEN

ITB Therapy: higher CSF concentrations (\uparrow 50 times) with lower baclofen dose (\downarrow 100 times)1

WHAT IS ITB THERAPY?

- Implantable, programmable pump delivers baclofen directly into the intrathecal space. Trialed 1985
- Commissioned when a patient has chronic, severe, diffuse spasticity and/or dystonia of spinal or cerebral origin which renders them a full time wheelchair user or bed bound. Defined as having an Ashworth score of ≥4 in at least two muscle groups which is uncontrolled by oral medication or conventional means

ITB Policy – Neurosciences CRG NHSCB/D04/P/c 2013

STAGES OF ITB THERAPY

Patient Selection Algorithm:

ITB REVIEWS & REFILLS

REVIEWS:

 life style, medication & medical changes, spasticity aggravating factors & symptoms

REFILLS & DOSE CHANGES:

- aseptic technique
- programming

2014/5 AUDIT: PATIENT PROFILE

	DIAGNOSIS:	6 MS, 3 TBI, 2 CP, 1 Anoxia, MND, Metachromatic, Spinal tumour.		
1,256, 110	AGE:	40 (18 – 60)		
	SEX:	9 Female, 6 Male*		
	AMBULANT:	2 walkers, 2 standing transfers, 11 hoist		
	DOSE:	455mcg/24 hrs (37 – 1500mcg)		
	DELIVERY:	10 SC, 5 BOLUS (2 night, 1 day, 2 periodic)		
	MEDICATION:	6 (antispasmodics)		

COMPLICATIONS: 0 (1 battery alarm, 1 revised catheter)

2014/5 AUDIT: OUTCOMES

SPASTICITY CLINIC RECOMMENDATIONS PRE ITB TRIAL

Oral antispasmodics	7 (6 gabapentin, 4 baclofen, 2 pregablin, 1 diazepam)			
Physio/exercise/posture	6			
FES	2			
Continence	2			
BTX	1			
Other	1 orthotics, 1 environmental controls, 1 OT, Intrathecal Phenol			
N/A	2 (no spasticity)			

Code	EFFECTIVENESS OF ITB:	ITB GOALS (/9)
1	Cease / control spasms	7
2	Improve seating comfort	6
3	Improve transfers	3
4	Improve ease of care including dressing	2
5	Improve maintaining personal hygiene	3
6	Reduce pain	4
7	Reduce risk of pressure sores	4
8	Allow withdrawal of oral anti-spasmodics	9
9	Reduce risk of other complications (specify)	1
10	Other	

COMPLICATIONS

Borrini et al., Occurrence of Adverse Events in Long-Term Intrathecal Baclofen Infusion: A 1-Year Follow-Up Study of 158 Adults Archives of Physical Medicine and Rehabilitation 2014;95:1032-8

EFFECTIVE *but* **UNKOWNS**...

TREATING CAUSE OR SYMPTOMS?

Particularly difficult to differentiate in prolonged disorders of consciousness

- Boster A. L., et al.,. 2016. Best Practices for Intrathecal Baclofen Therapy: Dosing and Long-Term Management. Neuromodulation 2016; 19: 623–631
- Thibaut et al., Spasticity in disorders of consciousness: A behavioral study Europ Jnl of Phys & Rehab Med. Volume 51, Issue 4, 1 August 2015, Pages 389-397
- Schnakers C et al., Assessment and Management of Pain in Patients With Disorders of Consciousness. PM&R 2015 7:S270-S277

PHYSIOLOGY

- CFS moves in pulsating manner synchronous with heart beat in caudal direction.
- Limited CFS movement at thoracic / lumbar region
- CSF Absorption via arachnoid villi at in superior sagittal sinus & spinal cord (25-50%)
- Baclofen density > CSF so distribution affected by gravity

- During intrathecal infusion the plasma concentrations do not exceed 5ng/ml, confirming that baclofen passes only slowly across the blood-brain barrier.
- According to the half-life measured in the CSF, CSF steady-state concentrations will be reached within 24hrs.
- During continuous intrathecal infusion, a baclofen concentration gradient is built up in the range between 1.8 : 1 and 8.7 : 1 (mean: 4 : 1) from lumbar to cisternal CSF.

- Herre et al., Clinical Relevance of Pharmacological and Physiological Data in Intrathecal Baclofen. Therapy Archives of Physical Medicine and Rehabilitation 2014;95:2199-206
- Lioresal® Intrathecal SPC emc⁺ 2016

TREATMENT OPTIONS.....

- 1. Increase effect on upper limbs
 - Increase dose
 - Lower concentrations and increase speed of delivery
 - Maintain concentrations but increase speed of delivery (periodic bolus)
 - Higher catheter tip placement
- 2. Vary effect on tone during the day/night
 - Flexi-dosing
- 3. Management of baclofen tolerance
 - ITB holiday
 - Periodic bolus

CATHETER PLACEMENT

- National Intrathecal Baclofen Document Consensus Guidelines for Intrathecal Baclofen Therapy May 2010
- Grabb et al., Midthoracic catheter tip placement for intrathecal baclofen administration in children with quadriparetic spasticity. Neurosurgery 1999;45:833-6
- Turner M; Nguyen HS; Cohen-Gadol AA; Intrathecal baclofen as an alternative to intrathecal baclofen for intractable spasticity or dystonia: outcomes and technical considerations Journal of Neurosurgery: Pediatrics, 2012 Oct; 10(4): 315-319. 5p
- Albright et al., Intraventricular baclofen for dystonia: techniques and outcomes Journal or neurosurgery: pediatrics. January 2009 / Vol. 3 / No. 1 / Pages 11-14
- Herre et al., Clinical Relevance of Pharmacological and Physiological Data in Intrathecal Baclofen. Therapy Archives of Physical Medicine and Rehabilitation; 2014 ;95:2199-206

Innovating for life

- Clearfield et al., Intrathecal Baclofen Dosing Regimens: A Retrospective Chart Review. Neuromodulation 2016; 19: 642-649 ٠
- Herre et al., Clinical Relevance of Pharmacological and Physiological Data in Intrathecal Baclofen. Therapy Archives of Physical Medicine and • Rehabilitation 2014;95:2199-206

NO EFFECT ON THE TRUNK?

Gray, N.; Vloeberghs, M.. Effect of continuous intrathecal baclofen on sitting in children with severe cerebral palsy European Journal of Paediatric Neurology, January 2014, 18(1):45-49

RESPIRATORY EFFECT?

- **+ve:** Kishima 2016 6 pts, spirometry measures pre & post implant increase in FVC, %FVC & FEV1.
- Ln: Bensmail 2006 20pts, polysmnography pre & post implant improved sleep, no effect on apnoea's / LFT's
- -ve: Bensmail 2012 11pts, severely disabled patients polysmnography pre & post implant + *bolus vs SC delivery* increased the RDI and central apnoea's with bolus

• Kishima H., et al., Respiratory Function Under Intrathecal Baclofen Therapy in Patients With Spastic Tetraplegia. Neuromodulation 2016 19: 650–654

• Bensmail D, et al. Effect of intrathecal baclofen on sleep and respiratory function in patients with spasticity. Neurology 2006 Oct;67(8): 1432-6.

• Bensmail D et al., Pilot Study Assessing the Impact of Intrathecal Baclofen Administration Mode on Sleep-Related Respiratory Parameters Arch Phys Med Rehabil 2012 Vol 93,

ITB & CONSCIOUSNESS in DOC

Drug	Type of study	Diagnosis	Patients (n)	Injury nature	Outcomes	Duration of clinical improvement/ recovery of consciousness	
GABAergic drugs							
Zolpidem	Case series	PVS	3	TBI (2 patients), anoxia (1 patient)	Transient clinical improvement after daily therapy	4 h	
Zolpidem	Case report	PVS	1	ТВІ	Transient clinical improvement after daily therapy	3-4 h	
Zolpidem	Case report	MCS?	1	Anoxia	Transient clinical improvement after daily therapy	2–3 h	
Zolpidem	Case report	MCS	1	Anoxia	Transient clinical improvement after daily therapy	3-4 h	
Zolpidem	Case report	MCS?	1	Anoxia	Transient clinical improvement after daily therapy	1–6 h	
Zolpidem	SPECT study case report	Aphasia post-stroke	1	_	Transient improvement of aphasia and cerebral perfusion after daily therapy	~12 h	
Zolpidem	SPECT study case series	2 patients with motor deficit, 1 patient with spinocerebellar ataxia type 2, 1 patient with PVS	4	TBI, anoxia	Improvement of cerebral perfusion	-	
Zolpidem	SPECT study case series	Spinocerebellar ataxia type 2	4	-	Improvement of cerebral perfusion	-	
Zolpidem	SPECT study	VS	127	TBI	Improvement of cerebral perfusion	-	
Zolpidem	Double-blind, placebo-controlled study	PVS, MCS	15	TBI, anoxia, stroke	Transition from PVS to MCS in 1 patient only	Permanent	
Zolpidem	Prospective, double- blind, placebo- controlled, randomized study	PVS in children	3	TBI, anoxia	No significant improvement	-	
Zolpidem	Case report	MCS	1	TBI	No significant improvement	-	
ITB	Case report	PVS	1	Haemorrhage	Recovery of consciousness	Permanent	
ITB	Case report	PVS	1	TBI	Clinical improvement	Permanent	
ІТВ	Case series	PVS	5	TBI, anoxia, hæmorrhage	Clinical improvement in all but 1 patient	Permanent	

Ciurleo, R; Bramanti, P; Calabro, RS. Pharmacotherapy for Disorders of Consciousness: Are 'Awakening' Drugs Really a Possibility? DRUGS; NOV, 2013; 73; 17; p1849-p1862

ITB & CONSCIOUSNESS HYPOTHESES

- FDA & Medtronic ITB not indicated in 1st Year post TBI
- GABAergic (monoaminergic)
 - Post ABI initial unfavourable conditions inhibition dominates causes LOC
 - Prolonged O2 starvation secondary changes to GABA receptors to provide neurodormancy protection
 - Zolpidem: modulates/stimulates abnormal /neurodormant GABA_A receptors
 - ITB stimulation of GABA_B receptors
 - 1. Spinal level modulation of ascending nociceptive and proprioceptive pathways
 - 2. Brain; low level baclofen may 'restore' the cortico-thalamo-cortical connections influencing wakefulness, (memory) and consciousness
 - 3. Stopping 'oral' anti-spasmodics...

[•] Clauss R.P Neurotransmitters in Coma, Vegetative and Minimally Conscious States, pharmacological interventions Medical Hypotheses 75 (2010) 287–290

[•] Sara M et al., Intrathecal Baclofen in Patients With Persistent Vegetative State: 2 Hypotheses Arch Phys Med Rehabil Vol 90, July 2009

[•] Al-Khodairy et al., Influence of intrathecal baclofen on the level of consciousness and mental functions after extremely severe traumatic brain injury: Brain Injury, 2015 29:4, 527-532,

[•] Pistoia et al., Intrathecal Baclofen: Effects on Spasticity, Pain, and Consciousness in Disorders of Consciousness and Locked-in Syndrome Curr Pain Headache Rep (2015) 19:466

CONCLUSION

- Intrathecal Phenol
 - Effective method for managing lower limb spasticity with limited follow up.
 - Potentially underutilised but irreversibility creates specific ethical considerations
- ITB spasticity
 - Limited research base but potential to *advance* therapeutic effect with more targeted treatment based on good clinical reasoning.
 - Patient status and delivery modes create many variables so careful monitoring of *all* parameters when initiating new treatments & research
- ITB consciousness & DOC
 - Case studies suggest ITB can potentially alter level of consciousness
 - Primary treatment goal should be spasticity *but* secondary monitoring and consideration of spinal and brain stimulatory effect would seem appropriate

 Less reliance on oral anti-spasmodics in cognitively vulnerable patients

 More therapeutic, pharmacological and surgical options

THANK YOU FOR LISTENING